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S

ack of mathematics sophistication in preservice 
teachers has been addressed by the teaching prin-
ciple set forth in the Principles and Standards 

for School Mathematics (National Council of Teachers of 
Mathematics [NCTM], 2000). According to the principle, 

Teachers must know and understand deeply the mathemat-
ics they are teaching. . . . They need to . . . be skillful in 
choosing from and using a variety of pedagogical and assess-
ment strategies. . . . They need to know the ideas with which 
students often have difficulty and ways to help bridge com-
mon misunderstandings. (p. 17)

A recurrent barrier to deep understanding and skillful 
pedagogy is that most teachers teach the same way they 
were taught in elementary and high school rather than as 
they learned in undergraduate teacher-education programs 
(Bauersfeld, 1998; Désautels, 2000). Most preservice teach-
ers display little change in underlying dispositions or beliefs 
established long before they entered college (Zeichner & 
Gore, 1990). Such a stagnant condition is exacerbated 
when teachers hold arithmetic misconceptions (i.e., false 
knowledge believed to be true knowledge) that could ulti-
mately mislead one or two generations of new students. To 
advance teachers’ mathematics understanding and improve 

instructional pedagogy, mathematics educators must find 
effective ways to reverse well-documented teacher miscon-
ceptions about arithmetic.

We discuss arithmetic misconceptions in preservice ele-
mentary teachers and past attempts to remediate them. We 
also discuss use of manipulatives for teaching arithmetic 
because it is relevant for remediating misconceptions of 
preservice teachers. Finally, we report on two studies that 
test and replicate the effectiveness of an in-class interven-
tion designed to reverse common arithmetic misconcep-
tions and improve arithmetic understanding.

Misconceptions About Arithmetic

The most extensive recent work on teachers’ arithme-
tic misconceptions has been reported by Graeber, Tirosh, 
and Glover (1989) and Tirosh and Graeber (1989, 1990a, 
1990b). The significance of that body of work is twofold: 
First, it clearly identified the prevalence of misconceptions; 
second, it pioneered an effective procedure for address-
ing the problem. Yet, in over a decade since the original 
reports, relatively little research on teacher misconceptions 
has been published. 

In the original study on teachers’ mathematics miscon-
ceptions, Tirosh and Graeber (1989) revealed that many 
preservice teachers have difficulty selecting the appropriate 
operation for multiplication and division word problems, 
even though they can correctly compute with standard 
algorithms for numbers less than 1. One reason for the 
difficulty is the false belief that a quotient must be less 
than a dividend. Teachers have reported other patterns of 
misconception thinking: 

1. Misconceptions occur with all four arithmetic opera-
tions (e.g., addition and multiplication make numbers 
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larger; subtraction and division make numbers smaller; 
Graeber et al., 1989; Tirosh & Graeber, 1989).

2. Mastery of computational algorithms makes miscon-
ceptions more resilient (Tirosh & Graeber, 1990a).

3. Misconceptions are resilient to correction even when 
disconfirming computations and incompatible information 
are given (Fischbein, Deri, Nello, & Marino, 1985; Tirosh 
& Graeber, 1989).

Remediating Misconceptions 

Researchers have used cognitive conflict (reflective 
abstraction) to try to reverse teachers’ arithmetic mis-
conceptions. For example, Tirosh and Graeber (1990a) 
followed Swan’s (1983) lead in using conflict teaching 
to involve preservice teachers in discussions about their 
misconceptions. The researchers believed that discussions 
would result in cognitive conflict because of inconsisten-
cies between stated misconceptions and results of computa-
tions. Although positive results occurred, cognitive conflict 
could not be induced in a few of the preservice teachers. 

Tirosh and Graeber’s (1989, 1990a, 1990b) misconcep-
tion reports described landmark studies, but there were 
conceptual limitations. First, conflict-teaching interviews 
served as independent and dependent variables, thereby 
confounding the treatment with their resulting effect. 

Second, inducing cognitive conflict can often be a risky, 
inefficient enterprise because individuals seldom recognize 
their own misconceptions. For example, of 21 participants, 
Tirosh and Graeber (1990a) reported that only 6 students 
spontaneously recognized a contradiction and 7 students 
recognized a contradiction only after multiple, simple 
prompts. Of the remaining 8 students, 1 student never 
realized an inherent contradiction between her computed 
solution and her division misconception, and the 7 other 
students needed multiple prompts and problem situations 
to achieve cognitive conflict. In spite of these variations in 
cognitive conflict, Tirosch and Graeber did not report any 
analyses about degree of cognitive conflict achieved or sub-
sequent performance in or knowledge of mathematics. The 
interviewing sophistication needed to achieve this level of 
cognitive conflict would be difficult to replicate in teacher-
education programs even if conflict teaching became a uni-
versal remedy for preservice teachers’ misconceptions. 

Third, Tirosh and Graeber’s (1990a) one-on-one inter-
views lasted 35 to 50 min and occurred only in the context 
of division. Extrapolated to include addition, subtraction, 
and multiplication, such an intervention could rapidly 
become prohibitively labor intensive. Conflict teaching is 
probably not an intervention that has widespread efficacy 
for teacher-education faculty, particularly because teachers 
should never have learned misconceptions initially.

Tirosh and Graeber (1990a) reported that teachers’ mas-
tery of computational algorithms made their misconcep-
tions more resilient; Ball’s (1990a, 1990b) research bears 
on this point. She reported that preservice elementary and 

secondary teachers could correctly compute a division-
of-fractions problem but could not accurately portray the 
meaning of the solution. Moreover, even teachers’ cor-
rectly drawn pictures were of the problem statement rather 
than the solution. Only 1 of Ball’s 19 students focused on 
explaining division; the remaining 18 focused on only the 
number that was being divided. Similarly, Piel and Green 
(1994) reported that sixth-grade students and preservice 
elementary teachers were equally competent at computing 
division of fractions (e.g., 1/2 ÷ 1/3 = 1 1/2). Conceptually, 
neither group understood that the solution 1 1/2 referred to 
1 1/2 one thirds. Most teachers and students thought the 
solution referred to 1 1/2 wholes. Piel and Green argued 
that sixth graders who memorize rules such as invert and 
multiply for dividing fractions may grow up like the teach-
ers Ball (1990a, 1990b) studied who computed successfully 
but without understanding. 

Manipulatives

Although results differ depending on what and how 
manipulatives are used in learning situations, learning with 
manipulatives is correlated positively with later develop-
ment of mental mathematics (Gravemeijer, 1990), achieve-
ment, and understanding (Sowell, 1989). For example, 
base-10 blocks (a popular mathematics manipulative that 
contains small units for ones, thin rods for tens, ten-by-
ten flats for hundreds, and a large ten-by-ten-by-ten block 
for thousands place values) improves students’ conceptual 
understanding of arithmetic operations (Carpenter et al., 
1999; Fuson & Briars, 1990). In geometry, using a compass 
to learn about circles produces better understanding of cen-
ter and radius concepts than does traditional circle tracings 
and templates (Chassapis, 1999).

If manipulatives produce better conceptual understand-
ings than do traditional teaching techniques, why are they 
not typically used for teaching mathematics to preservice 
teachers? Successful completion of college mathematics 
courses does not ensure that taking higher level mathemat-
ics influences previously constructed misconceptions. One 
reason may be that teachers tend to use manipulatives as 
enjoyable diversions but do not believe they are essential 
to teaching and understanding. Given their effectiveness 
with young students, is it not possible that relearning with 
manipulatives could undo or reverse misconceptions previ-
ously learned by preservice teachers? We designed the two 
studies reported here to answer this question.

Rationale

Piaget’s constructivism is best captured in a fundamental 
tenet: To understand is to invent. Accordingly, conceptual 
knowledge originates in the inventive activities of the learner 
through actions on objects rather than from sensory impres-
sion or social transmission derived from teachers and parents 
(Piaget, 1970, 1974). Following this reasoning, arithmetic 



www.manaraa.com

236 The Journal of Educational Research

misconceptions can be understood as inventions and mean-
ings that reflect incomplete or partially adapted knowledge. 

The widespread and well-documented arithmetic mis-
conceptions among preservice education majors suggest 
common but incomplete school experiences spent learning 
arithmetic with, about, and through symbols. We suggest 
that misconceptions may originate and persist because they 
depend purely on symbols and do not affect computational 
accuracy. Simple misconceptions learned in elementary 
school (e.g., addition and multiplication make larger; sub-
traction and division make smaller) may produce concep-
tual misunderstandings that seldom get corrected in more 
complex mathematics classes because even when symbolic 
answers are computed accurately, the meaning of a solution 
is seldom questioned. 

Support for this line of reasoning derives from Tirosh and 
Graeber (1990a), who suggested that a standard algorithm 
may be the source and continuing support for an underly-
ing misconception. In this sense, a misconception may 
originate in a conceptual limitation of abstract number 
symbols. That is, when numerals instead of objects undergo 
arithmetic manipulations, as is typical in elementary school 
classrooms, one can easily see how inappropriate conclu-
sions can be drawn as a function of the numerals used 
rather than the values they represent. 

Table 1 compares sample compositions and solutions for 
symbolic and concrete manipulatives for the four arith-
metic operations. If students are taught by teachers using 
only symbolic notation (numerals), they may perceive 
that addition and multiplication do make numbers bigger 
because the numeral on the right side of the equal sign is 
larger than either factor or number on the left. Similarly, 
subtraction and division operations produce numerals on 
the right side of the equal sign that are smaller than either 
of the factors on the left. 

Conversely, cells in the counters (round counting disks) 
column represent number of objects rather than number 
of numerals. For addition problems, counters on the left 
equal the counters on the right; the equation is balanced. 
For every arithmetic operation, concrete objects make clear 
that one cannot obtain more or fewer objects than one 
started with, unlike that which computational algorithms 
do with symbolic numerals. For example, 6 ÷ 3 = 2 in sym-
bolic notation represents an arrangement of 6 grouped into 
sets of 3 two times, which is depicted by the counters. With 

counters, the solution 2 is visually compelling because 
it shows two sets of three. Using counters, one might 
conclude that division, like all arithmetic operations, is a 
way of arranging objects (e.g., disaggregating by groups of 
equal size). This line of reasoning suggests that concrete 
manipulatives may provide an effective way to remediate 
misconceptions in preservice teachers. 

The pedagogical strategy described in the previous para-
graph does not depend on verifying the presence of cogni-
tive conflict as a psychological state of disequilibrium in an 
individual’s mind nor does it depend on reflective abstrac-
tion (Piaget, 1974); rather, our primary focus is on perform-
ing actions on objects with a hierarchy of manipulatives. 
In this sense, our treatment might be called guided con-
structivism. Students are guided in building an appropriate 
concrete model and then shown how to use the model to 
perform actions embedded in problem situations. Because 
our focus is action on objects, the first two authors teach 
action language that describes an arithmetic arrangement 
to be performed for any real-world problem. With guided 
constructivism, students learn to use manipulatives as tools 
of action that can be later incorporated into mental actions 
on objects. 

Our notion of guided constructivism contrasts with 
what Simon (2000) referred to as radical constructivism, 
the subjective construction of personal and social mean-
ings. Guided constructivism is conceptually similar to 
Freudenthal’s (1991) guided reinvention or guided recon-
struction. Our intent was to guide students through a hier-
archy of manipulatives that represent increasingly abstract 
objects—from concrete to representational to transitional 
to symbolic—by using manipulatives as tools for examin-
ing, constructing, seeing, and testing the performance of 
arithmetic operations and studying their interrelationships. 
For example, addition is the same action of joining whether 
the joining is of Cuisenaire rods, steps on a number line, 
tally marks in a place-value chart, symbolic numerals, or 
even variables—joining is always the same action regard-
less of the objects that are joined.

One can contrast guided constructivism with Bruner’s 
(1960) concept of discovery learning and its attendant 
spiral curriculum. Underlying Bruner’s approach is the 
belief that “learning depends upon knowledge of the 
results of one’s tests, and instruction should have an edge 
over ‘spontaneous’ learning in providing more of such 

TABLE 1. Comparison of Visual Information Obtained Through Symbolic Notation and 
Hands-On Manipulatives

Operation Symbolic notation Hands-on manipulative (counters)

Addition 2 + 3 = 5 oo + ooo = ooooo
Multiplication 2 × 3 = 6 ooo ooo = ooooo o
Subtraction 5 – 3 = 2 oo (ooo) → = oo
Division 6 √ 3 = 2 ooooo o √ ooo = ooo ooo
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knowledge” (p. 44). Therein, students are charged with 
learning content and skills of a discipline, and a good 
teacher is able to teach any subject “to anybody at any 
age in some form” (Bruner, p. 12). In contrast, guided 
constructivism begins with problems to solve, invokes 
the use of manipulatives as tools for problem solving, and 
relies on the invention of personal meanings as the basis 
for understanding and sense making. 

For purposes of the studies reported here, we hypoth-
esized that classroom instruction using concrete and 
representational manipulatives with preservice teachers 
would produce (a) decreased arithmetic misconceptions 
(invalid knowledge) and (b) a corresponding increase in 
correct knowledge.

Method

Participants 

Participants in Study 1 were 53 undergraduate volunteers 
enrolled in three sections of a child-development course 
taught by the first two authors. The university’s institutional 
review board approved data-collection procedures in which 
the teaching professor left the classroom and in his absence 
a nonteaching author solicited volunteers and collected 
data from active participants. Participation in the study was 
kept confidential from the teaching professor until after 
the end of the semester. The child-development course is 
a program requirement for elementary education majors at 
a large state university in the Southeast accredited by the 
National Council for Accreditation of Teacher Education. 
Students generally take the course in the first semester of 
their junior year. Most of the students were women (88.7%) 
with an average age of 26.12 years (SD = 7.88). The average 
SAT mathematics score was 487.27 (SD = 67.05).

Treatment

To illustrate how constructivism can be applied to ele-
mentary classrooms, course instructors incorporated abbre-
viated lessons with concrete and representational manipu-
latives adapted from their mathematics education class. 
The lessons covered 4 classes of a 30-class semester. All 
instruction was oriented toward classes rather than indi-
viduals. Table 2 provides an outline of the content of these 
classes, which consisted of using manipulatives to solve a 
problem posed by the instructor. Students compared solu-
tions, and the instructor demonstrated the solutions with 
overhead manipulatives or whiteboard illustrations. 

The instructors had co-taught an elementary math-
ematics methods course for the past 10 summers and were 
well-acquainted with each others’ examples, demonstra-
tions, and pacing. They agreed on a sequence of lessons 
(activities and demonstrations) and the timing for various 
instructional components. Total instruction time was four 
1 1/3 hr class sessions (5 1/3 hr; see Table 2). 

Table 2 shows that students sometimes actively engaged 
in activities and sometimes simply observed the instruc-
tor solving problems with manipulatives. All partic-
ipants solved whole-number addition and multiplica-
tion problems with Cuisenaire rods and base-10 blocks, 
then observed the instructor’s use of a place-value chart, 
expanded notation, and partial sums and products algo-
rithms. For subtraction and division of whole numbers 
and the four arithmetic operations with fractions, stu-
dents used only Cuisenaire rods and observed no higher 
level manipulations. Instructors did not directly answer 
students’ questions about correct solutions or pedagogical 
questions. Instead, instructors redirected such questions 
to the class, to arrangements of manipulatives, or to 
whiteboard examples of problem solving. 

Without directly helping students overcome their mis-
conceptions, instructors managed class discussions with 
prompts such as:

• Do we end up with more, less, or the same amount 
that we started with?

• What amount remains on the left side of the equal 
sign? What amount on the right side?

• Can you ever get more or less than you started with?
• Is the equation balanced? What is a balanced equation?
• Is it important to balance an equation? Why?
• What does the answer represent? (particularly impor-

tant with division of fractions)
• What does addition (multiplication, subtraction, 

division) actually do? (Instructors called students’ atten-
tion to ways of arranging objects: How does the problem 
tell us the objects should be arranged? When we mul-
tiply, do we arrange objects the same way as when we 
add/subtract them?)

An important component of our guided constructivism 
was introducing students to and practicing action language 
for arithmetic operations. Action language provides a 
ready-made instrument for assimilating the action of a 
problem, a way of understanding the type of arrangement 
that is described in a problem. Rather than use traditional 
arithmetic language that carries few semantic cues for 
arranging objects, instructors consistently used the follow-
ing terms to emphasize how an operation describes actions 
on objects, whether manipulatives or symbols.

Addition joined with (+) 3 joined with 4 is what?
Multiplication sets of (×) 2 sets of 3 is what?
Subtraction take away (–) 9 take away 4 is what?
Division grouped into (÷) 8 grouped into sets of 2 

   how many times?
    (÷) 8 grouped into 2 sets, with 

   how many in each set?

Instructors phrased and modeled all problem situations 
and open-number sentences using this action language 
and explicitly made connections for these actions between 
operations on whole numbers and operations on fractions. 
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Instrument

The mathematics survey consisted of 20 items based 
on the research literature and included correct responses 
and misconception responses about operations on whole 
numbers and fractions, the meaning of the equal sign, algo-
rithmic procedures, positional meanings in open-number  
sentences, and conceptual understanding of computing 
algorithms. We determined evidence of the instrument’s 
validity by using expert judgments of three mathematics 
education faculty about the relationship between individ-
ual items and the constructs of misconceptions and knowl-
edge, as well as the representativeness of the chosen set of 
items (see American Educational Research Association, 
American Psychological Association, & National Council 
on Measurement in Education, 1999).

We calculated our scales from the mathematics sur-
vey items: (a) Misconception, (b) Tirosh–Graeber (TG)- 
Misconception, (c) Knowledge, and (d) TG-Knowledge. 
We used 15 of the items to calculate the Misconception 
scale. The misconception score was the percentage of 
misconception options participants selected across the 15 
items (Cronbach’s alpha of .87) and resulted in scores rang-
ing from 0% to 100%. We designed 4 of the 15 misconcep-
tion items to specifically assess misconceptions reported 
by Tirosh and Graeber (1990a, 1990b) for whole-number 
operations; TG-Misconception scores were the percentage 
of misconception options selected on the 4 items (Cron-
bach’s alpha of .89). We calculated the Knowledge scale 
from the percentage of correct responses according to 16 
of the mathematics survey items (Cronbach’s alpha of .88). 
The TG-Knowledge score (Cronbach’s alpha of .89) was the 
percentage of correct responses based on the same 4 items 
as the TG-Misconception scale, but the TG-Knowledge  
score reflected correct answer selections rather than mis-
conception answer selections. Because we based the four 
scales on some common items, there is a dependency 

among the scale scores. To control for an inflated Type 1 
error rate caused by the anticipated relationship between 
variables, we used a more stringent level of significance 
(nominal α of .01). 

At the end of the mathematics survey, students com-
pleted an additional sheet showing a division-of-fractions 
exercise: 1 1/2 ÷ 3/4 = ? Directions on the sheet prompted 
students to (a) show the computation of a correct solution 
and (b) draw a representation of their solution to show the 
meaning. To assist with an appropriate, easy-to-interpret 
representation, instructors told students, “Imagine that the 
problem above is about pizzas. Draw a picture showing how 
your solution would look in terms of pizzas (label any ele-
ments for clarity).”

We scaled computations as follows: 1 (no computation), 
2 (incorrect computation), and 3 (correct computation). 
Pictorial representations were scored on a 4-point scale: 
1 (no representation), 2 (inappropriate representation of 
wrong answer), 3 (inappropriate representation of two 
objects), and 4 (appropriate representation of two sets of 
three fourths). Essential to an appropriate representation 
was an illustration that clearly conveyed the idea of two 
sets of three fourths pizza (not two whole pizzas). Figure 1 
shows examples of inappropriate and appropriate illustra-
tions. The mathematics survey and division-of-fractions 
problem took students between 8 and 20 min to complete.

Study 1 Results

We included 50 of 53 participants who completed the 
pretest and the posttest in our data analyses. (Three of the 
original participants were eliminated because of a missing 
pretest or posttest.) We conducted four dependent t tests 
for related samples to examine differences between pretest 
and posttest in the Misconception, TG-Misconception, 
Knowledge, and TG-Knowledge scales. Table 3 shows the 
means, standard deviations, and t tests for these variables. 

TABLE 2. Instructional Plan for Manipulatives and Content Covered During Treatment

 Arithmetic content taught

 Addition and Subtraction and 
Hierarchy multiplication of division of whole 
level whole numbers  numbers Fractions

Symbolic NA NA NA
Transitional Expanded notationa

 Partial sums, productsa NA NA
Representational Base 10 blocks,b place  
   value charta   NA NA
Concrete Cuisenaire rodsb Cuisenaire rods Cuisenaire rods
Instructional time 2 hr 1.7 hr 1.6 hr

Note. NA = not applicable.
aIndicates students observed modeling by instructor but may or may not have taken notes.  
bIndicates students actively participated and solved problems with their kits.
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There was a statistically significant decrease between the 
pretest and posttest for both misconception scales. For the 
full Misconception scale, participants had a pretest mean 
of 64.27% selection of misconception options across the 

15 items; but only 14.18% selection of misconception 
options on the posttest, t(49) = –26.84, p < .01. On the 
TG-Misconception scale, participants’ mean decreased 
from 89.50% on the pretest to 20.0% on the posttest,  

TABLE 3. Study 1 With Four Arithmetic Scales: Mean Pretest and Posttest Percentages, Standard Deviations, and  
Dependent t Test Results

 Pretest (N = 50) Posttest (N = 50)

Scale M SD M SD t ES

Misconception 64.27 8.21 14.18 11.77 –26.84* 7.31
TG-Misconception 89.50 20.26 20.00 29.88 –13.33* 4.04
Knowledge 21.97 7.73 72.80 13.46 23.90* 8.76
TG-Knowledge 10.00 20.20 72.50 35.45 10.75* 4.10

Note. Effect size (ES) is based on a pooled standard deviation and correction for the relationship between pretest and posttest (Lipsey, 1990).
*p < .001.

FIGURE 1. Examples of students’ incorrect and correct illustrations.

Incorrect Illustrations Correct Illustrations
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t(49) = –13.33, p < .01. The magnitude of change from pre-
test to posttest for both misconception scales was large. Using 
Lipsey’s (1990) method, we found effect sizes of 7.31 for the 
Misconception scale and 4.04 for the TG-Misconception  
scale; findings were similar for both knowledge scales. That 
is, there was a statistically significant increase in the mean 
percentage correct response in the Knowledge scale, with 
a pretest mean correct score of 21.97%, increasing to a 
posttest mean of 72.80% on the posttest, t(49) = 23.90, 
p < .01. The TG-Knowledge percentage correct increased 
from 10% on the pretest to 72.5% on the posttest, t(49) = 
10.75, p < .01. 

One of the most important results of this study was the 
performance illustration in the division-of-fractions prob-
lem, 1 1/2 ÷ 3/4 = ? in which participants exhibited dif-
ferent but predictable patterns. When computing division 
of fractions, 88.7% of our preservice elementary teachers 
showed a correct calculation and solution on the pretest. 
However, the modest improvement to 94.1% correct solu-
tions on the posttest was not significant as computed by the 
Wilcoxin signed ranks test (z = .75, p = .45). These results 
suggest that most participants could accurately compute 
division of fractions before our intervention. In contrast, 7 
participants (14.0%) correctly illustrated two sets of three 
fourths pizzas on the pretest, but this number improved to 
37 participants (74.0%) on the posttest, over a five-fold 
increase. This pre- to posttest improvement in illustration 
accuracy was statistically significant (z = 5.40, p < .01).

Study 2 Results

Thirty-nine participants completed the pretest and post-
test in Study 2. Table 4 shows the means, standard devia-
tions, and dependent t tests results for the four mathemat-
ics scales. The trend in the data was similar to Study 1. 
A statistically significant decrease occurred between the 
pretest and posttest for both misconception scales. For the 
full Misconception scale, participants had a pretest mean 
of 45.92% selection of misconception options across the 
15 items but only 18.17% on the posttest, t(38) = –13.85,  

p < .01. On the TG-Misconception scale, participants’ 
mean decreased from 37.18% on the pretest to 12.82% 
on the posttest, t(38) = –6.53, p < .01. The magnitude of 
change from pretest to posttest for both misconception 
scales was not as large as in Study 1, with effect sizes of 3.22 
for Misconception and 1.56 for TG-Misconception. We 
found similar results for both knowledge scales. Specifical-
ly, a statistically significant increase occurred in the mean 
percentage correct response in the Knowledge scale, with 
a pretest mean correct score of 17.18% rising to 54.28% 
on the posttest, t(38) = 14.79, p < .01. The TG-Knowl-
edge percentage correct increased from a pretest mean of 
8.97% to a posttest mean of 55.77%, t(38) = 6.74, p < .01. 
Corresponding effect sizes for these results were 4.38 for 
Knowledge and 2.35 for TG-Knowledge scales. 

The results of   Study 2 participants on the two performance- 
based items were similar to those of participants in  Study 
1. For computing division of fractions, 61.5% of the preser-
vice elementary teachers showed a correct calculation and 
solution on the pretest. Computational accuracy increased 
to 71.8% correct on the posttest. However, this increase 
was not statistically significant (z = 1.15, p = .25). In con-
trast, only 6 participants (15.4%) correctly illustrated two 
sets of three fourths pizzas on the pretest; on the posttest, 
22 participants (56.4%), nearly a threefold increase, cor-
rectly illustrated the pizzas. This pre- to posttest improve-
ment in illustration accuracy was statistically significant  
(z = 3.58, p < .01).

Discussion

The findings of the two studies reported here were 
statistically significant and educationally poignant. They 
suggest that a relatively modest investment of instructional 
time including appropriate manipulative-based problem 
solving can produce powerful educational benefits for pre-
service elementary teachers. The primary focus of Study 1  
was assessing the hypothesis that short-term arithmetic 
instruction using hands-on manipulatives and observations 
of instructor activities with manipulatives can effectively 

TABLE 4. Study 2 With Four Arithmetic Scales: Mean Pretest and Posttest Percentages, Standard Deviations, and  
Dependent t-test Results

 Pretest (N = 50) Posttest (N = 50)

Scale M SD M SD t ES

Misconception 45.92 12.86 18.17 11.53 –13.85* 3.22
TG-Misconception 37.18 21.36 12.82 22.85 –6.53* 1.56
Knowledge 17.18 11.54 54.28 15.23 14.79* 4.38
TG-Knowledge 8.97 21.06 55.77 41.94 6.74* 2.35

Note. Effect size (ES) is based on a pooled standard deviation and correction for the relation between pretest and posttest (Lipsey, 1990).
*p < .001.
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reverse arithmetic misconceptions. However, such a finding 
could have been achieved without corresponding improve-
ment in arithmetic understanding. Consequently, we tested 
the hypothesis that problem solving with manipulatives can 
produce more accurate arithmetic knowledge to replace the 
misconceptions. Both hypotheses were accepted in Study 1 
and replicated with an independent sample in Study 2.

The two studies reported are important for four reasons. 
First, they indicate that the arithmetic misconceptions 
reported by Tirosh and Graeber (1989, 1990a, 1990b) are 
still prevalent. Our mathematics survey pretest confirms 
the continuing frequency of arithmetic false beliefs among 
preservice elementary teachers.

Second, Study 1 and Study 2 show that manipulatives 
can effectively reverse most arithmetic misconceptions of 
elementary education majors before they enter classrooms 
as full-time teachers. This finding is important because 
teachers tend to teach the way they were taught (Bauers-
feld, 1998; Désautels, 2000). Our results suggest an effective 
approach to breaking the long-term resistance to change 
reported by Zeichner and Gore (1990). The biggest peda-
gogical problem is to help teacher candidates to recognize 
that they do not know what they do not know. Whereas 
Tirosh and Graeber (1990a) used one-on-one cognitive 
conflict training to induce recognition of misconceptions, 
whole-group instruction with manipulatives can accom-
plish the same recognition far more efficiently. We believe 
that participants’ active use of manipulatives to solve 
problems was critical to their reconstructions (no direct, 
explicit instruction about misconceptions was given). Had 
we demonstrated only how to use these manipulatives to 
solve problems without students’ direct problem solving, 
we believe students would not have produced knowledge 
gains or decreased misconceptions.

Third, our two studies demonstrate that the same activi-
ties used to reverse misconceptions can also improve the 
accuracy and depth of arithmetic knowledge. Given the 
construction of our mathematics survey, elementary edu-
cation majors could have reduced misconceptions and 
replaced them with distracters that sounded appropriate 
but did not convey accurate knowledge. That did not hap-
pen. Our students consistently improved their arithmetic 
knowledge in both studies. To amplify this point, the 
computational accuracy for division of fractions showed 
no pre- to posttest change. This finding is exactly what 
one would expect from computationally proficient under-
graduates. A typical student learns this algorithm in fifth 
grade and thereafter experiences many years of schooling 
in which repeated computational practice is an embedded 
feature of pedagogy. Consequently, if a student can calcu-
late proficiently and consistently derive correct solutions, 
there is often little opportunity in later algebra, geometry, 
or calculus coursework to realize or discover any faulty 
arithmetic misconceptions.

In contrast to fraction computations, only 7 participants 
in the Study 1 pretest and 6 participants in the Study 2  

pretest (15% of all participants) could appropriately illus-
trate their division-of-fractions solution as two sets of 
three fourths; most students illustrated two whole pizzas or 
two pieces of pizza (cf. Ball, 1990a, 1990b; Piel & Green, 
1994). During the treatment, students spent only 1 1/2 
class periods using Cuisenaire rods to explore operations 
on fractions. Yet, in this brief treatment, 37 Study 1 partici-
pants and 22 Study 2 participants (66% of all participants) 
provided an appropriate posttest illustration, more than 
a four-fold improvement in participants’ understanding. 
We suspect that the hands-on instruction was effective in 
part because, unlike performing calculations on numeric 
symbols, using Cuisenaire rods enabled students to see the 
pieces. Students were asked to illustrate their solution to  
1 1/2 ÷ 3/4 = ? (see Figure 1). In pretests for both studies, 
the most frequent illustration showed either two whole piz-
zas or two pieces of pizza (instead of two sets of three fourths 
pizza, the correct answer). However, posttest illustrations 
in both studies showed that although Solution 2 did not 
change, its meaning had changed for many students. By the 
posttest, 66% of all participants had exhibited their under-
standing as two sets of three fourths pizza. With numeric 
symbols, Solution 2 may have been misleading because it 
seemed to have no objects to refer to; when students used 
the standard algorithm, the original three fourths had been 
transformed symbolically to its inverse, four thirds. 

Fourth, the design of the studies reported here, a replica-
tion across an independent sample, is unusual in education 
research literature. As the U.S. Department of Education 
(2001, 2003) promotes scientifically based evidence and 
prefers experimental and quasi-experimental studies, repli-
cations such as the one reported here may gain support. 

If knowledge can be constructed, then it can be recon-
structed. The key issue is how mathematics educators can 
effectively teach education undergraduates to reconstruct 
more meaningful and accurate understandings of arith-
metic concepts. Our two studies show that a cost- and 
time-effective strategy can be implemented through the use 
of manipulatives that intrudes modestly into the normal 
preservice teacher curriculum. The outcome can produce 
benefits that are immediate, theoretically sound, and peda-
gogically significant. 

Two limitations of our studies were the use of convenience 
samples and the absence of a control or comparison group. 
An important and relevant question not examined here 
concerns the durability and stability of changes in arith-
metic knowledge and misconceptions that resulted from 
short-term interventions. Do elementary education majors 
remember their learning 1 to 2 years after their experience? 
A longitudinal study could answer this question. 

The problem with misconceptions is that people do not know 
they have them; therefore, misconceptions may be perpetuated 
in the classroom. Mathematics educators have a responsibility 
to engender in teachers a deep understanding of arithmetic—its 
patterns, functions, and meanings (NCTM, 2000). In our two 
studies, we suggest there are direct, pragmatic, replicable, and 
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effective means of providing mathematical experiences for 
preservice education teachers that reduce misconceptions and 
increase knowledge.
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